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 Knowledge representation 

To create programs that have "intelligent" qualities, it is necessary to develop techniques 

for representing knowledge. Unlike to people, computers do not have the ability to acquire 

knowledge on their own. 

Al programs use structures called knowledge structures to represent objects, facts, rules, 

relationships, and procedures. The main function of the knowledge structure is to provide the 

needed expertise and information so that a program can operate in an intelligent manner. 

Knowledge structures are usually composed of both traditional data structures and other 

complex structures such as Logical, frames, scripts, semantic networks, conceptual graph, 

and ATN(augment transition network ).  

 

 Knowledge representation schemes 

In Al, there are four basic categories of representational schemes: logical, procedural, 

network and structured representation schemes.  

1. Logical representation 

It uses expressions in formal logic to represent its knowledge base. Predicate Calculus 

is the most widely used representation scheme. 

2. Procedural representation 

 It represents knowledge as a set of instructions for solving a problem. These are 

usually if-then rules we use in rule-based systems. 

3. Network representation  

It captures knowledge as a graph in which the nodes represent objects or concepts 

in the problem domain and the arcs -represent relations or associations between them. 

4. Structured representation  

It extends network representation schemes by allowing each node to have complex 

data structures named slots with attached values. 

 

In this course, we will focus on logic representation schemes Insha’Allah. 
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Logical representation scheme  

The prepositional calculus and the predicate calculus are first of all languages. 

Using their words, phrases, and sentences, we can represent and reason about properties 

and relationships in the world. The first step in describing a language is to introduce the 

pieces that make it up a set of symbols. 

1. Prepositional Calculus (PPC) 

This type of representation can be used some of conceptions such as: 

 Axiom: it always known as truth. 

 Proposition: its known as a Boolean sentence, the truth symbols maybe true 

or false, 

 Theorem: it’s a Boolean sentence; it can conclude form the axioms.       

 

The PPC is content form the following three parts: 

 A set of the concepts, axioms and proposition that can be represented by 

Well-Formed Formula (WFF). It symbols denote propositions of 

statements about the world that may be either true or raise, such as "the car is 

red" or "water is wet." WFFs are denoted by uppercase letters near the end of 

the English alphabet (i.e. P, Q …etc.).  

 A set of connections that can connect two or more WFF sentences:  

NOT ⌐      ┐ Negation Connection 

AND ˄ Conjunction Connection  

OR ˅ Disjunction Connection  

IF  Implication Connection 

IFF  Equivalence Connection 
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 A set of Inference Rules that can be used to conclude new sentences form the 

old sentences. We can explain two types of these inference rules: 

a) Modus Ponens (MP)   

If the sentences P and (PQ) are known to be True, Then this rule infers 

Q is True.   

b) Modus Tolen  (MT)    

If the sentence (PQ) is known to be True and Q is known to be False, 

Then this rule infers ⌐P is False.   

 

2. Predicate Calculus (PC) 

In prepositional calculus, each atomic symbol (P, Q, etc.) denotes a proposition of 

some complexity. There is no way to access the components of an individual assertion. 

Predicate calculus provides this ability. For example, instead of letting a single 

prepositional symbol, P, denote: The entire sentence "it rained on Tuesday," we can 

create a predicate weather that describes a relationship between a date and the weather, 

such as: weather (Tuesday, rain) through inference rules we can manipulate predicate 

calculus expression accessing their individual components and inferring new sentences. 

It can represent the predicates by: 

     name-predicate (  parameters ). 

 

 Examples of English sentences represented in predicate calculus: 

1- If it doesn't rain tomorrow, Tom will go to the mountains. 

¬ weather (rain, tomorrow)   go(tom, mountains). 

 

2-  All basketball players are tall. 

   (basketball _ player(X)  tall (X)) 
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  3- Some people like borrowing. 

   (person(X) ˄ likes(X, borrowing)) 

 4- Nobody likes taxes 

¬    likes(X, taxes). 

 

Automatic Theorem Proving 

It’s also called Resolution technique for theorem proving in propositional and 

predicate calculus which attempts to show that the negation of the statement produces a 

contradiction with the known statements. This technique depends on the Refutation that 

will happen in the Knowledge Base (KB). 

 Algorithm Resolution technique proofs involve following steps: 

1. Assume that ┐P  is True. 

2. Show that the basic axioms together with ┐P  lead to contradiction. 

3. Conclude that, since the axioms are correct, ┐P  must be False. 

4. Since ┐P  is False, P must be True. 

 

Before done this algorithm, it must be convert all the sentences form WFF to 

Clause form. Therefore, it can use the following algorithm to done this convert: 

  Algorithm to convert a WFF to Clause Form : 

1. Change PQ   to  ┐P˅Q 

              P↔Q   to   (┐P˅Q) ˄ (┐Q˅P) 

2. Reduce the range of negative; for example covert  

 

 

 

 

 

3. Relocate the universal quantifier   to front of the clauses. Example: 
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       (P(X) ˅ ┐Q(Y))  to     P(X) ˅    ┐Q(Y) 

4. Rewrite the sentence in conjunction normal form (i.e. the AND would be 

distributed with respect to the OR). For example:  

(A ˄ B) ˅ (B ˄ C) would be redistribute (A˅ B) ˄ (B˅ C) ˄ B ˄(A˅ C). 

 

 

 

Ex1: You have the following axioms:  

1. feather (rook). 

2.   (feather(X)→ bird(X)) 

By Automatic Theorem Proving prove that bird (rook) 

 

Firstly, change WFF to Clause form 

1. feather (rook). 

2.  ┐feather(X) ˅ bird(X)) 

Add the negative theorem that need to prove  

3. ¬ bird (rook) 
 (1),(2)  4. bird (rook)                                according to MP 

 (3),(4)  empty                        

So, the theorem ¬ bird (rook) must be False, therefore the theorem bird(rook) must be 

True. 

 

 

Ex2: You have the following axioms:  

1. father (ali, ahmed). 

2. has (ali, money) 

3. ( father (Z, X) ˄ has (Z, Y) ) → has (X, Y) 

 
By Automatic Theorem Proving prove that has (ahmed, money) 

Firstly, change WFF to Clause form 

1. feather (ali, ahmed). 

2. has (ali, money). 

3.  ┐father(Z,X) ˅ ┐has(Z, Y) ˅ has(X, Y) 

Add the negative theorem that need to prove  

4. ¬ has (ahmed, money) 
 (2),(3)  5. ┐father(ali, X) ˅ has(X, money) 
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 (4),(5)  6. ┐father(ali, ahmed) 

 (1),(6)  empty                        

So, the theorem ¬ has (ahmed, money) must be False, therefore the theorem has 

(ahmed, money) must be True. 

 
 
Ex3: You have the following axioms:  

1.  Fido is a dog. 

2. All dogs are animals. 

3. All animals will die. 
 

By Automatic Theorem Proving prove that Fido will die 

Firstly, change all sentences to WFF  

1. dog (fido). 

2.   (dog(X)→ animal(X)) 

3.   (animal(Y)→ die(Y)). 

Add the negative theorem that need to prove  

4. ¬ die (fido) 
After that, change WFF to Clause form 

1. dog (fido). 

2.  ┐dog(X) ˅ animal(X)) 

3.  ┐animal(Y) ˅ die(Y)). 

4. ¬ die (fido) 
(1),(2)  5. animal (fido)                                according to MP 

(3),(5)  6. die(fido)                                       according to MP 

(4),(6)  empty                        

So, the theorem ¬ die (fido) must be False, therefore the theorem Fido will die must be 

True. 

  

 
Ex4: You have the following axioms by WFF:  

1.  gt (2017, 79). 

2. man (ali) 

3. man (X2) → dead (X2, 79) 

4. Now= 2017 

5. alive (X4, T3) → ┐dead (X4, T3) 

6. [ dead (X4, T3) ˄ gt (T4, T3) ] → dead (X4, T4) 

  

By Automatic Theorem Proving prove that : ┐alive (ali, Now). 
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Firstly, change WFF to Clause form 

1. gt (2017, 79). 

2. man (ali) 

3. ┐man (X2) ˅ dead (X2, 79) 

4. Now= 2017 

5. ┐alive (X4, T3) ˅ ┐dead (X4, T3) 

6. ┐ dead (X4, T3) ˅ ┐gt (T4, T3) ˅ dead (X4, T4) 

Add the negative theorem that need to prove  

7. alive (ali, Now) 

(4),(7) 8. alive (ali, 2017) 

      (2),(3) 9. dead (ali, 79)                                          according to MP 

      (6),(9) 10. ┐gt (T4, 79) ˅ dead (ali, T4)               according to MP 

      (1),(10) 11. dead (ali, 2017)                                  according to MP 

      (5),(11) 12. ┐alive (ali, 2017)                               according to MT 

      (8),(12)  empty 

 

So, the theorem alive (ali, 2017) must be False, therefore the theorem ┐alive (ali, 2017) 

must be True. 

 

 

 

Ex5: You have the following paragraph: 
   

All people that are not poor and smart are happy. Those people that read are smart. 

John can read. Also, he is not poor. Happy people have exciting lives. Can anyone be found 

with an exciting life? 

 

Firstly, change all sentences to WFF 

 

1) All people that are not poor and smart are happy. 

   [ ┐poor(X) Λ smart(X) ] → happy(X). 

2) Those people that read are smart. 

           (read (Y) → smart(Y)). 

3) John can read. 

        read (john) 

4) John is not poor 

       ┐poor (john) 

5) Happy people have exciting lives. 

           (happy (Z) → exciting (Z)). 

6) The negation of the conclusion is: 

         ┐exciting (W). 
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After that, change WFF to Clause form 

1. poor(X) ˅ ┐smart(X) ˅ happy(X). 

2. ┐read (Y) ˅ smart(Y) 

3. read (john) 

4. ┐poor ( john) 

5. ┐happy (Z)) ˅ exciting (Z) 

Add the negative theorem that need to prove  

6. ┐exciting (W) 

(1),(4) 7. ┐smart(john) ˅ happy(john) 

      (2),(3) 8.   smart(john)  

      (7),(8) 9. happy(john) 

      (5),(9) 10. exciting(john) 

      (6),(10)  empty 

 

The theorem ┐exciting (john) must be False, therefore the theorem exciting (john) must 

be True. So, we can find one person has an exciting life. 

 

 


